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We define two new models on the square lattice in which each allowed con- 
figuration is a superposition of a covering by "'white" dimers and one by "black" 
dimers. Each model maps to a solid-on-solid (SOS) model in which the "height" 
field is two dimensional. Measuring the stiffness of the SOS fluctuations in the 
rough phase provides critical exponents of the dimer models. Using this "'height" 
representation, we have performed Monte Carlo simulations. They confirm that 
each dimer model has critical correlations and belongs to a new universality 
class. In the "dimer-loop" model (which maps to a loop model) one height 
component is smooth, but has unusual correlated fluctuations; the other height 
component is rough. In the "noncrossing-dimer" model the heights are rough, 
having two different elastic constants; an unusual form of its elastic theory 
implies anisotropic critical correlations. 

KEY WORDS: Dimer packing; fully packed loop model; height model; 
classical spin models; solid-on-solid models; Coulomb gas; Monte Carlo 
simulations. 

1. I N T R O D U C T I O N  

Certain discrete spin models are defined by a constraint on the configura- 
tions, with all allowed configurations receiving equal statistical weights. 
Among these are dimer models and ice models, as well as the (highly 
degenerate) ground-state ensembles of antiferromagnetic Potts models and 
frustrated I~sing models. Many of the models on two-dimensional lattices 
are critical, in that correlation functions decay with distance as power 
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laws ~ and every one of these critical models has been found to have a 
"height representation,'"-" 3~ that is, a l-to-1 mapping of the microstates to 
those of a sort of interface model. 

A "height representation" means that each configuration can be 
mapped to a configuration of "heights" z(x) on the lattice, i.e., to a con- 
figuration of a sort of solid-on-solid (SOS) model. Furthermore, this SOS 
model is (usually) in a rough phase, described at long wavelengths by a 
gradient-squared elastic free energy. From this we follow a route familiar 
in the context of the two-dimensional X Y  model (see, e.g., ref. 4): the height 
fluctuations diverge logarithmically. Furthermore, local spin operators can 
be represented as complex exponentials of the height variables. Hence the 
correlations of those operators decay as the exponentiai of a logarithm, 
explaining the criticality and providing formulas for the critical exponents 
in terms of the elastic constantsJ s~ (See Sections 2.1 and 2.5 below for more 
about this derivation.) The height approach also yields the critical 
exponents of the specific heat and correlation length as T--* 0 in models 
where the excitations map to topological defects of the interface model. 

It is possible for the "height" variable z(x) to have dimensionality 
d • > 1, so that each configuration corresponds to a two-dimensional sur- 
face embedded in a (2 + dl)-dimensional hyperspace. After this point was 
noticed c3"6~ it was a natural step to construct new models which admit 
height mappings, in the hope that the heights would be "rough" and the 
corresponding spin models would be critical. Since only one model with 
d • > 1 was solved in the past (the 3-coloring of the honeycomb lattice), ~(' '~ 
it is likely that new models of this type belong to new universality classes. 
For example, Read ~ conjectured that the 4-coloring of a square lattice 
(which has d -t =3)  would belong to the universality class of the SU(4) 
Wess-Zumino-Witten field theory; this has been supported by Monte 
Carlo simulations. ~"" The triangular Ising antiferromagnet for any spin 
number S > 1/2 is a height model with S-dependent exponents; in this case 
d • = 1, ~k~ (The constrained four-state Potts antiferromagnet on the square 
lattice, a case where d • = 5, was also studied, but in that model the height 
field appears to be smooth.) c ~-'~ In some special cases the "height" approach 
allows the exact determination of an exponent. 12" ~3~ 

The "height model" approach is closely similar to the "Coulomb gas" 
theory of critical models, ~ ~z, There are three differences in emphasis: 

(i) Our "height space" may have more than one dimension. (In 
Coulomb gas language, there may be more than one flavor of "charge.") 

(ii) We limit ourselves to mappings that are one-to-one between the 
microscopic spin configurations and the microscopic height configurations, 
modulo some global arbitrary choices (such as a constant shift of all the 
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heights); the Coulomb gas picture is often applied to less trivial transfor- 
mations of the partition function, in which additional variables are intro- 
duced (and the original variables may be summed over, as in a duality 
transformation). 

(iii) Because the mappings are one-to-one, the height representation 
can be directly used to analyze Monte Carlo simulations. 

Here we report two models representing two new universality classes. 
Each model is built from two (interacting) copies of the dimer covering of 
a square lattice, and each corresponds to d-L= 2. 

1.1. Definitions of the Models 

The building block for both of our models is the complete covering of 
a square lattice by dimers (i.e., each vertex has one end of a dimer), as in 
Fig. 1A, which will be called the "simple dimer model" in this paper. It is 
a height model with d ' =  1, and the elastic constant is known since the 
model is exactly solved. 1~51 The new models are: 

(i) "Dimer-loop model." Each allowed configuration consists of 
"black" dimers, forming a complete dimer covering of the square lattice, 
and "white" dimers, forming another complete dimer covering. We exclude 
any configurations in which the same bond is occupied by both a black 
dimer and a white dimer; thus the dimers form nonintersecting loops cover- 
ing all vertices, each loop consisting of alternating white and black dimers 
(see Fig. 1B). 

(ii) "Noncrossing dimer model." Each allowed configuration consists 
of "black" dimers, forming a complete dimer covering of the square lattice, 
and "white" dimers, forming a complete dimer covering its dual lattice. 
Now we exclude any configurations in which a white dimer crosses a black 
dimer (see Fig. 1D). 

In either model, it can be checked immediately that the interaction 
between colors is not so strong as to make the models trivial: that is, given 
a typical configuration of (say) black dimers, there is still an extensive 
entropy of allowed ways to arrange the white dimers. 

Mappings of the Dimer-Loop Model. As its name implies, the 
dimer-loop model may also be viewed as a loop model, in a family which 
also contains the equal-weighted six-vertex model. This is useful, first 
because it makes contact with the large literature on loop models, and 
second because it suggests concrete interpretations of the two components 
of the height space (see Section 2.3 below). 

822,'86,3-4-5 
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Fig. I. S a m p l e  c o n f i g u r a t i o n s  o f  the  mode l s  f rom s imu la t i ons  o f  8 x 8 latt ice: (A)  Simple  

d i m e r  model ,  he ights  --(x) m a r k e d ;  (B)  d i m e r - l o o p  mode l ,  wi th  :_,(x) m a r k e d ;  (C)  the s a m e  

loops  (d /me t  co lo r s  no t  d i s t ingu i shed)  wi th  a r r o w s  s h o w i n g  the  m a p p i n g  to  the  s ix-ver tex 

mode l  a n d  he ight  c o m p o n e n t  zt m a r k e d ;  (D)  n o n c r o s s i n g - d i m e r  model .  

Take each microstate in this model and make all dimers the same 
color. The new ensemble contains all ways to cover the sites with noninter- 
secting loops, each site being covered by exactly one loop, with a fugacity 
n = 2  for each loop (from the two ways in which it could have been 
colored). This is the square lattice version of the "fully packed loop" (FPL)  
model, which was originally defined on the honeycomb lattice. ~ The 
square lattice F P L  model is related to the dimer-loop model in much the 
same way that the honeycomb FPL  model is related to the honeycomb 
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three-coloring modelJ 81 The case n = 1 of the square lattice FPL  model is 
equivalent to the six-vertex (square ice) model with every configuration 
weighted equally/16~ The logic of ref. 7 suggests that the dimer-loop model 
maps to some O(n) model; it would not be surprising if our case (n = 2) 
were exactly soluble and had rational exponents. 

1.2. Outline of the Paper 

In Section 2 (see also the Appendix) we review the basic notions of the 
theory of height models as applied to the two-color dimer models: the 
height representation itself, the special microstates called "ideal states" 
which are flat in the height representation, the elastic theory, and finally 
the calculation of critical exponents. Section 3 describes the Monte Carlo 
simulations of both of the two-color dimer models; in addition, we 
simulated the exactly solved simple dimer model and the BCSOS model as 
tests. The results are collected in Section 4: we found that in the "dimer- 
loop model" one component of height space remains rough, while the other 
component becomes smooth (but with anomalous correlations suggesting a 
mediated interaction); in the "noncrossing-dimer" model both components 
of height space are rough. Section 5 contains a summary, some remarks on 
the new Monte Carlo methods introduced in this work (and refs. 10-13), 
and speculations on possible analytic extensions of this work. 

2. HEIGHT REPRESENTATIONS 

This section contains the theoretical apparatus for describing the two- 
color dimer models. As a motivation, it begins by reviewing how all critical 
exponents can be derived from the elastic constants in a generic height 
model. The rest of the section works out the necessary modification for the 
special cases of the two-color dimer models, with the complications of a 
two-dimensional height space. 

2.1. Fluctuations and Correlation Functions in Height Models 

Consider a generic height model with (for now) one component in the 
height space. The microscopic heights {z(x)} are defined on each lattice 
site and they are coarse grained so as to define a continuous height field 
h(x). As noted above, the height fluctuations are usually "rough"; here this 
will mean that the fluctuations of h(x) are weighted according to a 
gradient-squared elasticity, F =  ~ d2x f(Vh(x)) with a free energy density 

f(Vh)=�89 2 (2.1) 
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Inserting (2.1) into a Fourier transform gives 

F = ~  �89 IPl 2 Ih(p) l  2 (2.2) 
P 

Hence, by equipartition, 

1 
< Ih(p)12> - glPl 2 (2.3) 

From (2.3) we can 
( [ h ( x )  - h(0)]- ' ) ,  

calculate the height correlation function C(x)=  

= f  d2p 2 ( I - - cos (p 'x ) )  
C(x) (2.4) J ( 2 n )  2 K Ipl 2 

1 
const + ~ In lxl (2.5) 

Using (2.5), we can infer the correlation functions of any operator 
O(x), which is a local function of the spins (or dimers) in the vicinity of x. 
First, as will be justified in Section 2.2, we can write O(x) ~ O(h(x)), where 
O(h) is a periodic function dominated by 

O(h) ~ exp( _ iG" h(x)) (2.6) 

Then 

(O(x)O(O))  ~ Re(exp(iX)) 

where X =  G'(h(x)  - h(O)). But (exp(iX)) = exp( - �89 2)), since (2.2) 
implies X is a Gaussian random variable (more precisely, the long- 
wavelength contribution is). Hence 

(O(x)  O(O))  ~ exp[ - �89 ~ Ixl-.Io~l (2.7) 

where 

= ~  6'--' (2.8) q( G a- ) 2rcK 

In some models we can admit a small density of topological defect 
excitations characterized by a Burgers vector b. [That  is, if we follow the 
value of h(x) along a path circling the defect clockwise, then h(x) is not 
well defined, but has a net change of b.] The correlation between the 
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defects and antidefects defines another kind of correlation function, with 
"vortex" exponents given by 

K b2 (2.9) ,7,,(b) = ~  

In the case of dimer models, the defects are uncovered (or multiply 
covered) sites. 

Thus, if we know the value of K and the allowed values of G -t and b, 
then Eqs. (2.8) and (2.9) provide all the critical exponents that may occur 
in the model. This was worked out in detail for the case of the triangular 
Ising antiferromagnet by Bl6te, Hilhorst, and NienhuisJ 51 

2.2. Ideal S ta tes  

It is convenient to analyze height models by identifying special "ideal 
states," which are microstates in which the configurations are periodic in 
real spaceJ 2' 3. ]o-~21 So far this notion does not have any rigorous basis, but 
it is a useful shortcut for identifying the "repeat lattice" in height space. 
The possible Burgers vectors b of defects [entering Eq. (2.9)] belong to the 
repeat lattice, while the allowed wavevectors G l [entering Eq. (2.8)] of the 
operators belong to its reciprocal lattice. Hence, knowing the repeat lattice 
and the elastic constants means knowing the possible critical exponents of 
the model. 

Ideal states can be identified by either of the following criteria: 

(i) Flatness: The variance of {z(x)} within the ideal state is 
minimal. 4 

(ii) Entropy: Define two microstates to be "neighbors" in configura- 
tion space if they differ from each other on the minimum number of sites. 
(Such minimum differences are shown in Fig. 2.) Then an ideal state is one 
which has the maximum number of neighboring microstates. (That is, of all 
configurations, the ideal states have the maximum density of sites at which 
a minimal rearrangement can be performed.) Typically, the same micro- 
states satisfy both criteria. 

Each height model has several degenerate ideal states related by sym- 
metry operations. Every ideal state is associated with a "height" h, the spa- 
tial average of z(x) over its 2 x 2 unit cell. An arbitrary microstate can thus 
be divided into a set of domains of symmetry-related ideal states, with each 
domain considered to have a uniform value of h. This is the intermediate 

4 Note that no microstate has z(x)=const, as will be clear from the form of the height maps, 
e.g., (2.11) or (2.14)-(2.151. 
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Fig. 2. Rearrangements between two microstates; the first four form the basis of Monte 
Carlo updates (see Section 3). (A) Simple dinaer model, showing the heights z(x) (B, C) Two- 
color dimer-toop covering, showing heights -_~(x). (D, E) Two-color noncrossing-dimer 
covering. (F) Fragment of a state in the noncrossing-dimer model which cannot be updated. 
Rearrangements (A, B, D) produce the smallest possible difference between ground states. 
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Fig. 2 (Continued) 

step in the coarse-graining process, where we are already treating x as a 
continuous variable, but ~ takes on discrete values. In the final step of 
coarse graining, we replace ~ by h(x), which takes on a continuum of 
values. 

There is a finite number of ideal-states, but the values of z are un- 
bounded; for each allowed h value there is unique ideal state, but for a 
given ideal state the the possible h value is only fLxed modulo a Bravais 
lattice called the "repeat lattice." Thus the pattern of dimers near any given 
site is a function of h, and hence any local operator O(x) can be expressed 
as a function 0(~); furthermore, 0(h) must have the periodicity of the 
repeat lattice; thus it can be written as a Fourier sum of terms of form 
exp(iG • �9 h(x)), where G • are reciprocal lattice vectors of the repeat lattice. 

The pessible values of h in height space constitute the "ideal-state 
graph." The fact that the local configuration is more likely to be near an 
"ideal state" than far from one is expressed by an additional term V(h) 
which should be added to the free energy density (2.1). This V(h) can be 
called a "locking term," since if V(h) were strong enough, it would force the 
system into long-range order in one of the ideal states. Just like the local 
operators mentioned above, V(h) has the periodicity of the ideal-state 
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graph, and it, too, can be labeled by a reciprocal lattice vector of the repeat 
lattice, Gto~k. Standard Kosterlitz-Thouless theory ~4~ predicts that V(h) 
becomes relevant in the renormalization-group sense when 

r/(Gto~g) < 4 (2.10) 

At that point the height component ought to become smooth (a roughen- 
ing or "locking" transition). Notice that if the heights are in a "smooth" 
phase, then the reasoning in Section 2.1 implies that the correlations decay 
to a fixed nonzero value, i.e., that the spin model has long-range order. 

2.3. Height Mappings for Two-Color Dimer Models 

In general height mappings one defines a "microscopic," discrete- 
valued height function z(x) such that the step in z(x) between adjacent sites 
is a function of the adjacent spins (or, in this case, dimers). The height 
representations for two-color models are built in an obvious fashion from 
those of the simple dimer model. 

2.3.1. Review of Simple Dimer Model. We define heights z(x) 
on the dual lattice, i.e., in the centers of each plaquette. We take the 
standard orientation of every edge pointing from the even to the odd 
vertex. Say that x and x' are neighboring plaquette centers such that the 
edge between them is oriented left to right (when looking from x to x'); 
then define the height difference to be 

z ( x ' ) - z ( x ) =  +1 ( - 3 )  if there is no dimer (is a dimer) (2.11) 

on the edge between x and x'. Traversing the four plaquette centers sur- 
rounding any vertex, the total change in z(x) is 1 + 1 + 1 - 3 = 0 ,  since 
every vertex of the original lattice has exactly one dimer emanating from it. 
Thus z(x) is well defined everywhere, provided the dimer covering is com- 
plete. The { z(x) } values are indicated in Fig. 1A. 

It should be noted that the triangular Ising antiferromagnet ground 
states are (essentially) equivalent to the dimer coverings of the honeycomb 
lattice (each violated bond corresponds to a dimer), so the construction of 
z(x) here is closely analogous to that of ref. 5, and indeed the square and 
honeycomb dimer coverings have the same critical exponents, c~5~ The 
height map (2.11) for the square lattice case was in fact discovered several 
times in the context of quantum dimer models and nearest neighbor 
valence-bond ground states of s = 1/2 antiferromagnets; ~tT~ however, it has 
never been applied to derive exponents in the spirit of Bl6te, Hilhorst, and 
Nienhuis.~ 5 
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2.3.2. Height  Map  of the Dimer-Loop Model .  Clearly, we 
can construct heights for the two-color models by letting z=(z~ ,  Zw) 
where zB and Zw are the height configurations of the black and white dimer 
configurations, respectively, constructed by the rule given in (2.11 ). 

Let us define the even combination of heights 

z,=�89 (2.12) 

and the odd combination of heights 

z_~ = �88 +Zw) (2.13) 

Under the exchange black ~ white, (z~, z 2 ) ~  (z~, -z2).  
By inserting (2.12) and (2.13) into (2.11), we can write the dimer-loop 

height rule in components. When the edge between x and x' is oriented as 
in (2.11), 

z , ( x ' ) - z , ( x )  = +1 ( - 1 )  

on that edge, and 

z ~ ( x ' ) - z 2 ( x ) = 0 ( +  1, - 1 )  

if there is no dimer (is a dimer) (2.14) 

if there is no dimer (black dimer, white dimer) 

(2.15) 

~ A six-vertex configuration means a pattern of arrows on the dual lattice such that two ice- 
arrows are incoming and two are outgoing at every vertex. 

on the edge. 
As already mentioned in Section 1.1, if we do not distinguish black 

from white, this model reduces to the fully packed loop (FPL) model with 
loop fugacity n = 2. The FPL  model for general fugacities admits the same 
configurations, but with different weights. Any FPL configuration can be 
mapped 1-to-1 to a configuration of the six-vertex (or "ice") mode l :  a bond 
receives an ice-arrow pointing from the even to the odd vertex if that bond 
is occupied by loop segments, and pointing oppositely if the bond is vacant. 

The six-vertex model has a well-known height mapping, indeed its 
height configurations {zt(x)} are simply the microstates of the body- 
centered solid-on-solid (BCSOS) model, tlS~ The {zl(x)} sit on the dual 
lattice and are defined by - ~ ( x ' ) - z ~ ( x ) =  + 1 ( -  I) according to whether 
the ice-arrow (viewed looking from x to x') points right (left) along the 
edge between x and x'. It can easily be checked that the z~ configuration 
defined in (2.14) for the dimer-loop model is identical to the z~ configura- 
tion defined by mapping to the FPL and then to the six-vertex model, 
followed by the six-vertex height rule (see Fig. 1 ). 
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The component z2 has its own simple interpretation as an SOS model. 
The loops are simply contours of equal height z2. If one switched the colors 
white ~ black within one loop, then a step up would be turned into a step 
down. We could view the rule for {z2(x)} as a constrained SOS model: 
besides the standard restriction that [z2(x')-z2(x)[ ~< 1, we also require 
that every block of four plaquettes must include exactly two pairs of 
neighboring plaquettes on which z , (x ' )=z2(x) .  It is amusing that this SOS 
model, which would appear to be described by only one height variable, is 
one-to-one equivalent to the original two-color dimer-loop model and thus 
contains z~(x) as a second, hidden height variable. 

2.3.3. Height Map of the Noncrossing-Dimer Model. To 
define the heights for both colors of dimer in the noncrossing-dimer model, 
we arbitrarily define the dual lattice site at x + (�89 �89 to have the same parity 
as the original lattice site at x. Then we construct height configurations 
z~(x) and Zw(X) as before. However, in this model the {z~(x)} live on the 
original lattices, while the {Zw(X)} live on the dual lattice, so we cannot at 
this point define even and odd combinations like to (2.I2)-(2.13); we shall 
do so later, at the coarse-grained stage (see Section 2.4). 

2.3.4. Ideal States of Two-Color Dimer Models. The proposed 
ideal states for the models in this paper are shown in Fig. 3; they all have 
2 • 2 unit cells. The black or white dimer parts of these two-color ideal states 
are just ideal states of the simple dimer model. It is straightforward to iden- 
tify ideal states for the simple dimer and noncrossing-dimer models, but it is 
not so clear whether Fig. 3B is the best choice in the case of the dimer-loop 
model. We prefer Fig. 3B, as it has a smaller variance of the z~ component; 
indeed the zl(x) pattern here is the same as the ideal state of the BCSOS 
model. On the other hand, an alternative state, in which all the loops have 
length 4, does have a smaller variance of the z, component,  which is found 
to be in a "smooth" phase, as will be elaborated in Section 4. 

Figure 1A illustrates that real configurations can indeed be broken 
into "ideal state" domains. Note how all the sites with height "1" and most 
of those with height "0" or "2" are unchanged from a certain ideal state; 
this is not surprising, since such a small system has no room for a large 
height fluctuation. On the other hand, the local patterns appear different 
from those in an ideal state, in that one rarely finds more than two parallel 
dimers in a row. 

Figure 4 shows the ideal-state graphs for these models. For  the case of 
the simple dimer covering, the K values differ by -t- 1 between ideal states, 
and the repeat lattice constant is 4 (corresponding to the four symmetry- 
related ideal states). It turns out that the two-color ideal states are made 
from combinations of the simple-dimer ideal states, but not every combination 
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Fig. 3. Ideal states (A). for simple dimer model, (B) for dimer-loop model, and (C) for non- 
cr0ssing-dimer model. In (D) part of a "roof" configuration is shown for the noncrossing- 
dimer model; this is the opposite of an ideal state, since it has maximum height gradients. 

is ideal or  is optimal. For  the dimer- loop case, Fig. 4B, each black dimer 
ideal state can be combined with only one white dimer ideal state, so there 
are only four ideal states. For  the noncrossing-dimer case, Fig. 4D, simple- 
dimer states can be combined only if both  colors of  dimers are oriented the 
same way, so there are eight ideal states. 

2.4. Elasti'c T h e o r y  

Next we will work  out  the allowed symmetry  form of  the gradient-  
squared elastic free energy density f(Vh).  It is quite possible that  a two- 
dimensional  height space would have only one elastic constant  (as for the 
honeycomb two-color ing)J  6"81 However,  each two-color  dimer model  here 
turns out  to have two distinct elastic constants. 
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I see Section 2.4). (A) Simple dimer model:(B) dimer-loop model: (C) noncrossing-dimer model. 
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We proceed in the spirit of Landau theory, by first identifying the 
tranformations of {z(x)} which are induced by a given lattice symmetry 
operation. Next we identify the coarse-grained version of this symmetry 
operation, and finally we require that f(Vh) be invariant under this sym- 
metry. The elastic theory will be related to critical exponents in Section 2.5. 

2.4.1. Simple Dimer Model. The microscopic transformations 
are: 

(i) x~ -* xj + 1 induces z(x) -* - z ( x )  (because our standard orienta- 
tion of edges alternates between even and odd) 

(ii) x~ --* - x ,  (mirror line through a row of lattice points) induces 
z(x)--* - z (x ) ,  and of course Vi --* - V i  (we take Vi = O/Sxi). On the other 
hand, a mirror line through a row of plaquette centers is represented by 
xl ~ 1 - x l  and induces z(x)--* -z (x) .  

(iii) A fourfold rotation about a vertex induces z ( x ) ~ - z ( x ) ,  
V~ --*V2, V2--+ - V j .  On the other hand, a fourfold rotation about the 
center of a plaquette induces z(x) ~ z(x). 

Now we consider all possible terms bilinear in gradients of h(x). By 
(iii), V~hV~_h-~ -V~hV2h under a symmetry, so this term must have zero 
coefficient in the free energy. Also (V~ h) 2 ---, (V2h) 2, so that those two terms 
must have equal coefficients. Thus the generic form is 

f(Vh) = �89 10 2 + (Vzh) 2 ] (2.16) 

2.4.2. Dimer-Loop Mode l .  In the two-color dimer models the 
above reasoning still holds for all terms which depend purely on hw or on 
hs (the coarse-grained Zw and zB components), thus we only need to check 
the hB-hw cross-terms. 

In the dimer-loop model the reflection symmetry (ii) transforms 
VlhsTzhw ---~ - V i h s T z h w ,  thus such terms must be absent inf(Vh).  On 
the other hand, no symmetry excludes the terms V~hBV~h w and 
V2h~V2hw, and the fourfold rotation symmetry merely demands that their 
coefficients be equal. After diagonalizing the quadratic form in 7h we 
obtain 

f(Vh) = �89 [Vh, [2 + �89 2 [Vh2 [z (2.17) 

where 

(h,, h2) = (l(hn + hw), �88  hw)) (2.18) 

is the coarse-grained version of (z~, z_~) defined by (2.12) and (2.13). 
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We might have guessed the form (2.17) from a glance at the ideal-state 
graph (Fig. 4B), which shows that the h~ and h2 directions are not equiv- 
alent by any symmetry. Figure 4B also suggests that the stiffness should be 
greater for the ( 1, - 1 ) projection of height space than for the ( 1, I ) projec- 
tion, since fluctuations in the former direction must pass through several 
steps to get from one favorable (ideal) state to the next one. After the 
above changes of variables, this expectation translates to the inequality 
K2 >~4Ki. 

2 . 4 . 3 .  N o n e r o s s i n g - D i m e r  Model .  This case is subtler. A mirror 
line that passes through a lattice point in the black lattice runs through 
plaquette centers in the dual white lattice, hence a reflection induces, e.g., 
Vt ~ - V t ,  h~ --, h~, hw ---' - h w ;  the analogous thing happens with the 
fourfold rotation. For this case, the cross-terms V~ h~V~ hw and V2hBV2hw, 
are excluded, while VihBVzhw and Vih~V,hw are allowed, with the four- 
fold symmetry demanding that their coefficients be equal. 

We adopt height-space coordinates rotated by 45 ~ 

h,---~22 (h~ +hw), h,_-~22 ( - h B + h w )  (2.19) 

as in the dimer-loop model, except that here h~ and h_, are related by a 
symmetry. To represent the elasticity in the simplest form, we must also 
rotate real space by 45 ~ defining coordinates y, 

1 1 
y t - - ~ ( x l  + x2), W--- -~(- -x l  + xz) (2.20) 

"- x/ 2 

and the wavevector q is defined by the corresponding rotation on p. Under 
these changes of variables, the elastic terms noted in the first paragraph 
yield as the generic form 

2 ) ' 2 

(2.21) 

([h,(p)[ 2 ) = ( K + q I +  - q g ) - '  (2.22) 

with ([h2(p)[ 2) defined by exchanging 1 ~ 2 in (2.22). 

with two independent elastic constants K§ and K_. 
A consequence of (2.21) plus equipartition is that the generalization of 

(2.3) reads 
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There is a simple argument that K+ > K _ .  It can be checked that, 
with our even/odd conventions, the contribution to Ohu/Ox~ made by a 
black dimer on a vertical bond has the same sign as the contribution to 
Ohw/OX 2 that a white dimer on the horizontal crossing bond would have 
made. The exclusion between these possibilities has the effect of a positive 
term in the free energy proportional  to (Ohu/Ox~)(Ohw/tgx2); a similar argu- 
ment works for x, ~ x2. After we carry out the above changes of variable, 
we find that K+ - K _  in (2.21) is proport ional  to the positive coefficient of 
those terms. 

2.5. Crit ical  Exponents for  T w o - C o l o r  D imer  Models  

We can now calculate the correlation function exponents by the path 
sketched in Section 2.1, but adapting to d j- > 1 in two ways: 

(i) The elasticity has a more complicated form than Eq. (2.1), when 
there is more than one elastic constant. 

(ii) The spin operators are now represented by 

exp ( i G" ,  h(x)) (2.23) 

where G • is a vector of the reciprocal lattice of the "repeat lattice" in the 
height space; 6 similarly, a defect Burgers vector b must be a vector of the 
repeat lattice. 

The previously known example of a two-dimensional height space was 
the three-coloring of the honeycomb lattice. That  model is (essentially) 
equivalent to the three-state-Potts antiferromagnetic ground states on the 
Kagom6 lattice, 16~ the four-state-Potts antiferromagnetic ground states on 
the triangular lattice, 131 and the "fully-packed loop (FPL)  model" on the 
honeycomb lattice. ~ Given one previously known exponent of this 
model, Huse and Rutenberg used the arguments reproduced in Section 2.1 
to find the correlation function exponent of the Kagom6 three-state-Potts 
model t6~ (later additional exponents in the FPL  model were calculated in 
the same fashion), Is~ 

2 .5 .1 . -D imer -Loop Model .  In this model dimer-dimer  correla- 
tions which do not depend on the dimer color are governed by G •  
( G ( ,  G~)=(2rc/2,  0); those that treat black and white dimers as having 

~' The dominant wavevector G • for a given operator can be deduced easily with the aid of the 
"ideal states" graph. We have omitted this detail in the present paper; the method is 
explained in ref. 10. 
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opposite signs are governed by G• 2rc/2). The exponents are 
given by 

~(G• = 2n--~ ]G~ 12+ 12xK2 IG~ I z (2.24) 

A defect of type b=(b~ ,  b2)= (2, 1) corresponds to an endpoint of a 
loop, while b = (0, 1 ) corresponds to having two successive segments of the 
same color in a loop. The exponents are given by 

K, 2~16212 q, , (b)=~lb ,12+ (2.25) 

2.5.2. Noncrossing-Dimer Model.  In this case there are non- 
trivial modifications in the derivation on account of the anisotropic 
elasticity. The height correlation function is Ck(x)= ( [ h k ( x ) - h k ( 0 ) ]  2) 
(for k = 1, 2). Substituting from (2.22) and resealing the coordinates 

(q't, q ')  - (2q,, 2 -'q_,), (y'~, y~_) - (2 - 'Yt ,  23'2) (2.26) 

[where 2 - ( K + / K  )1/4], we obtain 

f dq', dq~ 2(1 - c o s ( q ' .  y')) 1 
Cl(x) (2~) 2 ~-~-~ 2 - c o n s t  + ~-~ In ly'l (2.27) 

w h e r e / ~ -  (K+ K )~/2. [ C_,(x) is also given by (2.27), but with 2 --* 2-~ in 
(2.26).] Recall that in all these formulas, y is the rewriting of x through 
(2.20); in particular, if we write x =  lxl (cos 0, sin0), then lY'l= 
Ixl f(O, )t) I/2, where 

f (0)  = 22 cos2( 0 -- ze/4) + 2 - 2 sin2( 0 - ze/4) (2.28) 

Thus if an operator is written in the form O ( x ) ~  exp(iG • h(x)), it follows 
as usual that 

(O(x)  O(0))  = e x p { - � 8 9  [ G " .  ( h ( x ) -  h(0))]2) } (2.29) 

This can be written 

(O(x)  O(0))  = exp{ - �89 z C,(x) + (G~) 2 Cx(x)] } 

where G • has been resolved into components in the (h~,h2) basis. 
Inserting the logarithm (2.27) into the exponential (2.29), we finally get 

<O(x) o(0)> ~ Ix1-"'cl~f(O)"'f(O--rc/2)'n (2.30) 
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where 

for k = 1, 2, and 

1 
'7 ~rz~ +'72 =2--~  IG• 2 (2.31) 

Thus, the exponents '7(G')  for the noncrossing-dimer model have just 
the form that would follow from an isotropic effective elasticity with one 
elastic constant K. However, the decay of correlations is not isotropic, as 
in other known cases, but has the anisotropy factors f ( - )  displayed in 
(2.30). 

The defect-defect correlation function corresponding to a Burgers 
vector b would have an exponent 

'7,,(b) = ( 2 ~ )  -~  R Ibl 2 (2.32) 

but with exotic anisotropy factors analogous to those in (2.30). 

3. MONTE CARLO SIMULATIONS AND RESULTS 

Monte Carlo simulations were performed for the dimer-loop and non- 
crossing dimer models in square lattices with periodic boundary conditions. 
Besides the new models introduced this paper, we have also simulated two 
exactly solved models as checks (both for debugging of our simulation 
codes and to test how much accuracy may be obtained from this way of 
analyzing the results). (i) Since both z~ and z 2 have configurations like 
those of a simple SOS model, we chose to simulate the BCSOS model. (ii) 
we also simulated the simple dimer model. 

In this section we present in turn the update moves, the simulation 
protocol, and the numerical results. 

3.1. Update Moves 

In some "height" models--e.g., the square lattice four-coloring 
modeP~~ or the constrained Potts antiferromagnettl2~--a nonlocal cluster 
or loop update move is required. In each of the two-color dimer models, 
however, a local update move, based on the rearrangements shown in 
Fig. 2, was adequate. A "pass" thus consisted in visiting each site once 
(in random order), testing whether the site could be rearranged, and if so, 

822,86, 3-4-6 
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changing it. These update rules satisfy detailed balance for the ensemble in 
which each microstate receives equal statistical weight. 

There is an important technicality associated with the question of 
ergodicity in the presence of our periodic boundary conditions. Let 
A i z = z ( L ,  0 ) - z ( 0 , 0 )  and A2z=z(0,  L ) - -z (0 ,0 ) .  These are Burgers 
vectors associated with the topologically nontrivial loops on the torus, and 
so they must belong to the repeat lattice. Then , ~ z  and zl2z are conserved 
under all local update moves, including ours. The average of the height 
gradient V~h is A~h/L, thus we are sampling an ensemble with a fixed 
average slope. [Our  moves do access all the microstates with a given 
(A i h, zJ2h).] 

We have just the same problem as if we were trying to study the ther- 
modynamics of an Ising model in zero field, but using an update which 
conserves spin. If we are in a paramagnetic state, we know that in the 
thermodynamic limit the magnetization is zero, and so we obtain the right 
results if we adopt initial conditions with zero total spin; however, we 
would have problems below the symmetry-breaking temperature. 

Here, we believe that the thermodynamic state has zero mean height 
slope (whether the heights are rough or smooth). Thus we require to 
choose initial conditions w i t h / l ~ h -  0 (this is possible when L is even). This 
also means that z(x) is single-valued and we can perform a Fourier trans- 
form without needing to subtract off the average slope Vh. 

The update rule of the simple dimer model is shown in Fig. 2A. Since 
each color of dimer must maintain a complete covering, every update move 
of the two-color dimer models is built from the update in Fig. 2A: either 
one color is updated (as in Fig. 2B) or both colors are updated at the same 
time (as in Figs. 2C and 2D). 

Given a generic free energy of form (2.1), standard arguments c~91 
would suggest that a coarse-grained description of the Monte Carlo 
dynamics would be 

dhq( t)/dt = ~q - F K  Iql 2 hq( t )  (3.1) 

where F is a kinetic coefficient and the random noise satisfies 
(~' ,(t)  ~ q . ( t ' ) ) = 2 F 6 q .  q, 6 ( t - t ' ) .  Thus the relaxation time is expected to 
be wavevector-dependent as r(q) ~ ]ql -2.c~ 

3.1.1.  D i m e r - L o o p  M o d e l .  The configurations were represented 
in the machine as configurations of z_,. As noted above in Section 2.3.2, the 
values of z~ may be (and were) reconstructed uniquely from those of z2. 

The update moves we used correspond to the two rearrangements 
illustrated in Fig. 2B and 2C in terms of z2 (or the moves related to 
them by symmetry). Both rules are necessary in order to access all the 
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microstates. Notice that the move in Fig. 2C has no effect on the z~ coor- 
dinate. 

For our simulations of the BCSOS model, the update move looks the 
same as Fig. 2C. 

3.1.2. Noncrossing Dimer Model. The configurations were 
represented as patterns of(z~, Zw). In order to ensure detailed balance for the 
update of the noncrossing-dimer model, we choose at random a plaquette of 
the black-dimer lattice and one of the four plaquettes of the dual (white- 
dimer) lattice that overlap the first plaquette; we check whether a rearrange- 
ment involving these plaquettes is possible, and if so, we carry it out. 

Including the move shown in Fig. 2E would have speeded up the simu- 
lation, but we did not implement it. We think that the Fig. 2D move by itself 
in time can access every configuration that the Fig. 2E move can access. 

A somewhat worrisome aspect of our update move is that it is not 
fully ergodic. Namely, if we let MB(Mw) be the number of black (white) 
dimers oriented in the x direction, then M ~ - M w  is conserved (by either 
of the possible update moves in Fig. 2). However, we do not think this 
invalidates the results. The thermodynamic limit is surely dominated by 
(M,~-  Mw)/N= O, and our simulations have M ~ -  Mw = 0 (or very nearly 
zero, in the " roof '  initial condition). Thus our ensemble, restricted by the 
conservation law, is related to the full one much as a microcanonical 
ensemble is related to a canonical one; such differences are usually irrele- 
vant in the thermodynamic limit. 

A more serious criticism is that there exist certain configurations 
(having zero mean height gradient) which contain no examples of the 
updatable configuration, Fig. 2D. A portion of a periodic pattern of this 
sort is shown in Fig. 2F. This means that we are in fact simulating a 
modified ensemble in which such microstates are not included. However, 
such states are a vanishing fraction of the total ensemble and do not matter 
in the thermodynamic limit. (If one takes the state in Fig. 2F and changes 
it in just one place, this introduces an example of the Fig. 2D pattern; then, 
starting from that place, it is possible by iteration of the update move to 
reach the canonical flat state shown in Fig. 3C.) 

3.2. Simulation Protocol 

One "sweep" consists of one random update per site. At sampling 
intervals of n,. sweeps we evaluate the Fourier tranform and accumulate the 
results in sums of [i(p)[ ~, where 

7-(P) = 1 ~, ei"'"z(x) (3.2) 
.,/Nx 
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(The correlation time for the shortest wavevectors is long enough that 
sampling at shorter intervals would be redundant.) For  both models, ~(p) 
was evaluated for all p using the fast Fourier transform (FFT).  

In the case of the noncrossing-dimer model we did not (and cannot!) 
define z(x), as za(x) and Zw(X) are defined on different sublattices of {x}. 
To implement (2.19), we define -~l(P) and 5_,(p) by 

[ _+ (3.3) 

Here ~w(P) is actually computed by taking the F F T  of the function 
Zw(X + [ 1/2, 1/2]) and multiplying by the exp ipc L:2. ~/2)j 7 

Data were typically sampled (taking the FFT)  once every 100 sweeps. 
On an IBM RISC-6000/320 workstation, each dimer-loop run of 1.4 x 106 
sweeps on a 64 x 64 lattice took ~ 150 hr and each noncrossing-dimer run 
of 5 x 105 sweeps on a 32 x 32 lattice took ,~ 10 hr. The results reported 
here are averaged from ~ 10 runs for each model studied (for the test models, 
simple dimers and BCSOS, much less computing effort was necessary). 

To provide a check on equilibration, two kinds of initial condition 
were used :  The first is an ideal state, so that the heights are as flat as 
possible (see Figs. 3A-3C). All the Fourier components ~.(p) are initially 
zero, except at p = ( n ,  0), (0, n), and (n, n); typically [~(p)[2 grows with 
time. The second initial condition is a "roof" pattern of heights, which is 
illustrated in Fig. 3D for the case of the noncrossing-dimer model. In this 
case the excursion of z(x)_fr_om its mean is O(L), much larger than in equi- 
librium, where it is O(x/ln L), and farther from equilibrium than the ideal 
state. If the height gradient of the "roof" runs in the x~ direction, then 
~(p, 0) is initially large and different in magnitude from ~(0, p). With time, 
the mean-squared ~.(p, 0) decreases and mean-squared ~(0, p) increases 
until they are equal, as required by symmetry. This was our diagnostic that 
equilibrium was reached in the time allotted. The initial difference between 
"roof" and "flat" initial conditions is most extreme at the smallest wave- 
vectors, which by (3.1) are the slowest relaxing ones; thus our diagnostic 
provides a sensitive test of whether our run time is adequate. (This is 
further commented on in Section 3.3, below.) 

To test our method to extract elastic constants, we also tested exactly 
solved models with height space dimension d x = 1 and with similar height 

7 Notice that, by (3.3), :'I(P) is not periodic modulo the Brillouin zone, but only modulo a 
doubled zone, so, e.g., 5~(n ,p ,_ lr  P2). The correct relationship is that 
51( p + (2n, 0)) = --'2(P), and similarly -=2(P + (0, 2n)) = 51(p). 

x The data averages reported include the entire simulation, so the run time should be much 
larger than the equilibration time in order to minimize systematic errors due to the initial 
configurations. 
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mappings. For  the dimer-loop model the BCSOS model was our test 
model; for the noncrossing-dimer model the simple dimer model was the 
test model. 

3.3 .  R e s u l t s  

Our fitting procedure was to perform a linear-least-squares fit of 
(l~i(p)12> - '  to a polynomial in (p~, P2) with all quadratic and quartic 
terms, using data from a disk in p-space, roughly IPl < 0.15 n. (If the quar- 
tic correction terms are omitted, the fitted elastic constants have systematic 
errors of > 1%.) 

The data (for selected wavevectors) are shown in Figs. 5-8 for the four 
models (simple dimers, BSCOS, dimer-loop, and noncrossing-dimer). 
Notice that Figs. 5-8 do not include all the data used for our fits: for 
clarity, we show only one-dimensional cuts through reciprocal space. 
However, where two values ought to be identical according to the sym- 
metries of the model, we have plotted both of them. We premultiply by 
p(p)2 = 2(2 - cos p.,. -- cos py), a Brillouin-zone-adapted version of I pl 2, so 
that the plots should asymptote to a constant as p ~ 0 if they follow the 
expected behavior for a rough interface. 9 

In the noncrossing-dimer plot one of the data points for the shortest 
wavevector (Ipl =2n/32)  is too low (compared to the line through the 
other data points), while the data points for the other symmetry-related 
wavevectors of the same length are about right. This is due solely to the 
Fourier component St(n/16, 0) being spuriously large (by a factor of 1.5) in 
the data sets using the " roof '  initial condition. That shows that the equi- 
libration time we allowed was in fact no t  longer than the longest relaxation 
time (however, all other wavevectors appear to be equilibrated). 
Presumably the same explanation applies to the similar (but smaller) dis- 
crepancies visible in some of the other plots. 

The elastic constants extracted from the best fits are shown in Table I. 
The error which we choose to quote is taken as twice the statistical error, 
to allow for systematic errors. (The statistical errors were calculated from 
the variance of the fitted elastic constants from at least four independent 
runs of the same model.) For the new models, we indicate conjectures 
(marked by. "?" in the tables), assuming that the stiffnesses are simple 
rational multiples of n (which would be the condition for having rational 
critical exponents). 

Table II shows the predicted correlation exponents when the (known 
or conjectured) exact stiffnesses in Table I are inserted into the theoretical 

,7 In the case of the simple dimer model, replacing 1012 by p{p)2 made a visible difference: most 
of the variation of IPI-' (I~(P)lZ> with p was canceled. 
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Table I. Stiffness Constants 

Model L C o ns t an t  Exact  value 

BCSOS 30 K = 0.513 ( 0.013 ) rt/6 = 0.523" 
Simple dimer  32 K,~ = 0.1959 [ 0.0007 ) rE/I 6 = 0.1963" 
Dimer- loop  64 K~ = 0.745 (0.015 ) n/4 = 0.785? 

K 2 = ,~_ 

Noncross ing-d imer  32 K ,  = 0.273 (0.006) rr/12 = 0.2618? 
K_ =0 .118  10.005) n/27 =0.1164'? 

" K n o w n  from all exact solut ion.  

Table II. Proposed Critical Exponents 

Model  G J- q( G �9 ) b q,.( b ) 

BCSOS 2n/2" 3 "~ I./3 
Simple d imer  2n/4" 2 4 I/2 

Dimer- loop  ( 2n/4, 0 ) ~' I/2'? 14. 0 ) 2'? 
Noncross ing-d imer  2n/4( I/x/'~2, 1/.~2)/'  9/4? 12. 2) 4/9? 

"Sp in  models  (tile three-state  Pot ts  an t i fe r romagnet  for tile BCSOS case and  the fully 
frustrated square-ht t t ice Ising model  ill the s imple d imer  case) are represented by the same  
height modek except that  they have  a larger repeat  spac ing  in height  space ( three t imes 
larger or  two times larger for the respective cases). T h u s  sp in - sp in  correla t ions  have q = 1/3 
tbr the three-state  Pot ts  model,  or  1/2 tbr the fully frustrated Ising m o d e l  on tile square  
lattice. 

J' For two-color  cases (G~, G,)  is given. 
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formulas (2.8) and (2.9) [or their generalizations (2.24), (2.25), (2.31), and 
(2.32) in Section 2.5]. Recall that ~/(G • are exponents for local operators, 
e.g., the dimer-dimer correlation, while q,(b) are for defect operators. 

4. D I S C U S S I O N  OF RESULTS 

In this section we review our expectations for a general height model 
in the light of Section 2.1, and then try to make sense of the prominent 
features of the results. 

4.1. General Expectat ions for Behavior of <lz~(p)12> 
The prime expectation is a consequence of coarse graining (Sec- 

tion 2.1 ). Near p =0,  i.e. averaged over tong wavelengths, z (p)~  h(p). Thus 
if the height field is in a "rough" phase, Eq. (2.3) implies 

([77(p)12>' ~KIp I  2 (4.1) 

in a one-dimensional height model; for d •  (4.1) has its obvious 
generalizations in terms of the elastic theory of Section 2.4. 

On the other hand, our usual picture of a "smooth" phase is that the 
system is in an ideal state on the majority of the sites. The fluctuations in 
equilibrium consist of individual sites, or very small domains, on which the 
heights deviate from the ideal state. Since these fluctuations are local and 
do not overlap, they ought to be independent. Hence their Fourier trans- 
form should have a white-noise spectrum, 

(Iz'(p)12> ~ const (4.2) 

as p ~ O .  
It should be noted that the general definition of a "smooth" phase in 

an SOS model is that the net height variance 

W 2 - ( z ( x ) ' - )  - ( z ( x ) ) - '  (4.3) 

is finite in the thermodynamic limit. Thus, smoothness means that the 
system undergoes a symmetry breaking in which a particular mean height 
is picked out with long-ranged order. Writing the height variance as 

w 2 = ~ (l~(p>l z) (4.4) 
p ~f)  
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we see that on insertion into (4.4) the smooth behavior (4.2) indeed gives 
a convergent sum, while the rough behavior (4.1) gives the well-known 
logarithmic divergence 

1 
W-' = const + ~ In L (4.5) 

since the sum (4.4) is cut off at the smallest p, which is of order 1/L. 
A generic feature in height model data is the presence of zone-boundary 

singularities of (Iz(p)l-~) for p near Q~)=(~ ,  0) and (~, 70. This is a conse- 
quence of the fact that z is not uniform even in an ideal state; rather, z - K  is 
modulated at wavevectors QCi~. The amplitude of modulation itself is a periodic 
function of the heights; thus it is an operator of form O(h) ~ exp(iG li~. h), imply- 
ing power-law correlations, as explained in Section 1. Following this through 
(ref. 10 gives more details for the case of the four-coloring model), we predict 

( ~ ( P ) l - ' )  ~ IP - QI~'F- ,2- , , ,~ , ,  ( 4 . 6 )  

where q~i) = r / ( G ~ i ) ) .  

In the case of the simple dimer model, examination of the modulations 
gives GCl~= 2g/4 and G~2~= 2g/2, implying (see Table II) that q~l)= 1/2 and 
Ji ~2~ = 2. Examination of our data from this model shows that the fluctuations 
indeed have a small peak at (g, 0) and are constant near (~, g). Such zone- 
boundary peaks have also been seen in simulations of other height models, c ~0. m~ 

In the discussion of each model we will check the plausibility of the 
behavior and numerical value of the stiffness constant by considering the 
models as modifications of exactly solved models. In particular, we may 
define generalized "ghost" versions of the two-color dimer models by dis- 
carding the hard-core exclusion between black and white dimers. Instead 
we might include a weight factor e - "  in the partition function for each such 
violation. Thus the u = ~ case corresponds to the models we simulated, 
and the u = 0 case is the noninteracting limit consisting of two copies of the 
simple dimer model. 

Presumably the stiffness constants are monotonic functions of u. Since 
the exclusion rules still permit flat "ideal" states, but permit fewer ways of 
fluctuating away from them, we anticipate that the stiffness constants 
increase as we turn on u. If so, then the elastic constants for the non- 
interacting cases, which may be found trivially by applying the changes of 
variables (2.17) and (2.18), supply a lower bound on the expected results. 

4.2. Dimer-Loop Model 

The dimer-loop model data could be fit to (I_~,(p)12> ~ 1/(K, Ip12), as 
expected for the "rough" behavior (4.1). However, it is evident from 
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Fig. 7A that (after excluding the smallest p value, see Section 3.3), these 
data deviate more strongly at small p than in the other models. They might 
be fit to a different exponent, roughly (Iz~(p)] 2) ~ ]p]-~.9, but this is so 
close to ]p]-2 that the latter seems more plausible. Perhaps the deviation 
can be blamed on coupling to the anomalous smooth component z2 (see 
below). As expected, ( [~(p)[2)  also shows slight maxima at the zone- 
boundary points QC~ and Q~2( 

However, as is obvious from Fig. 7B, the second height component 
has a different behavior: 

( 1~2(p)l z> ~ Ip1-12-,,...) (4.7) 

with 2 - r  1, very roughly. (The apparent exponent varies from ~0.6 
at the smallest IP] to ~ 1.2 at larger ]p].) The fact that r  0 implies the 
z2 component is "smooth" in the sense that the its variance W_~ is finite. 

Thus we are led to an approximate picture in which z2(x) is an ideal 
state configuration on which bounded fluctuations are superposed. (It is 
quite possible to have anomalous power-law correlations, yet have strictly 
bounded height fluctuations.) Indeed, examination of Fig. 1B shows that z2 
deviates at most _+ 2 from the ideal state; furthermore, the mean z2 is 7.51, 
compared with 7.5 in the ideal state. The same picture predicts that ([_~2[ 2) 
has a zone-boundary peak at Q~ =(g ,  0) approximating a 6-function, 
which is indeed seen in the data. 

4.2.1. T h e  A n o m a l o u s  S m o o t h n e s s  of  z 2. The smoothness of 
z2 is anomalous in that (4.7) is quite different from (4.2), the behavior for 
a generic "smooth" phase. The probable explanation is that z2 deviations 
experience a power-law effective coupling, mediated by the critical z~ fluc- 
tuations. 

As an approximation, let us take an ansatz that z2 is constrained to 
take on only two values, say 0 and 1. In the partially coarse-grained picture 
(see Section 2.2) the system consists entirely of domains with h2= 1/2, 
while ht can still take any value m + 1/2. However, it can be checked that 
each domain wall has a net excess ~z2 = _+ 1/4 per lattice constant in the x~ 
or x2 direction. Let us say h~= m along the domain wall separating states 
with h~ = m _  1/2 and ha = m +  1/2. It turns out that the sign of the excess 
is independent, e.g., of the wall orientation; it is a function only of m (or 
hz) with period 4, taking values in the repeating sequence 1/4, 1/4, -1 /4 ,  
- 1/4. This can be written 

(4.8) 
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Thus we have put the operator 6z2 into the form (2.6) with G • = (zc/2, 0). 
Consequently, using (2.8) and the conjectured exact value of K~ from 
Table I, we obtain r/"~)= q(G • ~ 1/2. [-The data (4.7), however, definitely 
point to a larger value of r/"~L] 

4.2.2. Comparison to Exactly Solved Models. First let us 
forget the -2 component (since it is smooth anyhow) and consider the 
uncolored FPL model introduced in Section 2.2 with stiffness Kv~,t.(n). The 
n =  1 case of the FPL is the equal-weighted six-vertex or "ice" model, 
which in the height representation is equivalent to the (exactly solved) 
BCSOS model. Now, increasing the loop fugacity n from 1 favors con- 
figurations which have many small loops and are thus flatter in the height 
representation. (The state with the maximum number of loops is the one in 
Fig. 3C, which also has maximum flatness.) Thus KvpL(n) should increase 
with 17, and indeed Table I shows that K~ -= KW, L(2) is larger than the stiff- 
ness of the (equal-weighted) BCSOS model K = Kw, L( 1 ) = re~6. 

For an independent comparison to an exactly solved model, consider 
the "ghost" dimer-loop model in its noninteracting limit. This has elastic 
constants K~t~ = 2Ko = zr/8 ~ 0.3927 and K ~ I =  Ko = ~/2. It can be checked 
using Fig. 4B that the reciprocal lattice vector for locking in the z_, direc- 

,~(G ~21 ~-4"  thus the "ghost" model is tion is vC'-~2~lock =(0,  27t) and hence ,~, Io~k~- �9 
exactly marginal. Increasing K 2 by turning on the dimer exclusion u 
infinitesimally would reduce p t~ -~  ~ and consequently, by (2.10), h_, l ~, ~ l o c k  ! 

should immediately lock (unroughen). 
On the other hand, returning to the FPL representation, it has been 

observed recently that in loop models r/(G~o~k) is typically marginal for the 
height component whose contours form the loops. ~-'~ (Such models include 
the honeycomb lattice FPL modeP 7"8~ and the four-coloring model on the 
square lattice. ~9~) This criterion would predict a finite value K_, = z~/2 for 
the dimer-loop model (presumably K,  would stay constant for all u in the 
"ghost" model; only K~ would increase as the dimer exclusion is gradually 
turned on.) Our data (Fig. 7B) clearly exclude this possibility; clearly z~ is 
not marginal either, since r/(Gtock ) = r/((2n, 0)) ~ 8. 

4.3. Noncrossing-Dimer Model 

After converting (2.21) and (2.22) from q coordinates back to p coor- 
dinates we obtain 

( I - , ( p ) I 2 ) - ~ = � 8 9 1 8 9  (4.9) 

near p = 0  and the same for (Iz2(p)12) except for a change of sign in the 
second term. The lack of isotropy seen in Fig. 8 is consistent with (4.9). 
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The difference in Table I between the measured K§ and our conjectured 
exact value ~/12 is significant. We have included this conjecture, nevertheless, 
for two reasons. First, fits using a somewhat larger portion of p space yielded 
systematically higher values of the elastic constants, suggesting that our 
best-fit value is still a bit too high; second, this conjecture implies a rational 
value of (K+/K_)1/2, so that the geometric mean K" (see Section 2.5) can 
also be a rational multiple of n, which in turn [by (2.31) and (2.32)] 
implies rational critical exponents. Our conjectured value is 

K'= n/9 (4.10) 

The data show zone-boundary peaks of ([Z(p)] 2) near Q~l~=(g, 0); 
the existence of peaks suggests that r < 2, however the data are too crude 
to estimate the exponent quantitatively. On the other hand, the theory of 
Eq. (4.6) would predict C tl = r/(n/2, g/2) = 9/4. 

Near the zone corner Q~2~=(g,n) more complicated behavior is 
observed. Approaching along the (1, 1) direction, the (]_--~(p)l 2) compo- 
nent vanishes as poQ~2~ roughly as ]p-Q212; in accord with the sym- 
metry here, (]~2(p)]2) behaves the same along the ( 1 , - 1 )  directions. 
(Approaching QI2~ along the orthogonal directions, one observes a con- 
stant limit, but this is really an independent wavevector; see footnote 7 in 
Section 3.2.) 

To understand what is going on at Q~'-~, note that 5~(Q~2~)= 
2(Mt~-Mw),  the excess of dimers of one color in a given orientation. 
Evidently, the long-wavelength fluctuations of this quantity are divergent. 
Possibly this behavior is an artifact of the dynamics we used, which (as 
noted earlier) conserves M s - M w .  But if that is the case, it cannot simply 
be a memory effect of the initial configuration (since that has 
M s -  Mw ~ 0). It is equally hard to blame the divergence on random fluc- 
tuations which develop during the runs (and then persist because the con- 
servation slows down the dynamics at those wavevectors): the divergent 
part does not differ from run to run, as would be expected from this 
explanation. An alternative hypothesis is that the excess M ~ - M w  (or, 
more precisely, the corresponding local density of the excess) functions like 
a third height variable in the free energy (thus explaining the inverse- 
square power of the divergence). However, it cannot be a height variable 
in the usual sense, since the system is not invariant under shifts of the 
excess. Thus we have no convincing explanation of the divergence at Q~-'~. 

Comparison to Exactly Solved Models. The noninteracting 
"ghost" dimer model has K + ( 0 ) = K  (0)=  Ko ~ 0.3927. The value for K+ 
in Table II is, as expected, greater than K+(0); however K is smaller than 
K (0). 
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5. C O N C L U S I O N S  

We have defined two new dimer models which have two-dimensional 
height representations as worked out in Sections 2.2 and 2.3. (A third new 
height model presented here is the Ising model mentioned in Section 4.2, 
which was not simulated.) By accumulating the mean-squared height fluc- 
tuations of each Fourier mode as analyzed from a Monte Carlo simulation, 
we have extracted estimates of the stiffness constants which are accurate to 
~1% , using modest system sizes (Section 4 and Table I). Via the 
Coulomb-gas-like notions in Sections 2.1 and 2.5, the stiffnesses imply 
critical exponents (see Table II). The latter show that our models belong to 
new universality classes, and (for the dimer-loop model) the exponents are 
suggestively close to being simple rational numbers. Each of our models 
has an anomalous feature: in the dimer-loop model the z2 height compo- 
nent is smooth, yet has critical correlations (Section 4.2), and in the non- 
crossing-dimer model correlation functions are anisotropic even in the 
critical limit (Section 2.5). 

In this work we have tested a new and better Monte Carlo technique 
for evaluating critical exponents. The results of these simulations (and 
those of other height models I to. ~ i) clearly show that the most efficient way 
to extract K is to measure the Gaussian height fluctuations and use (2.3) 
with (2.8) and (2.9) (or their generalizations) to infer the exponents, rather 
than to measure correlation functions directly. Unfortunately, this 
approach is applicable only to height models (and even spin models which 
have height representations at T =  0 generally do not at T >  0). 

We can see this comparison a bit more sharply because (as discussed 
in Section 4.1) the measured, Fourier-transformed height fluctuations 
([~(p)[2) in fact contain not only the peak around p = 0  from the long- 
wavelength modes, but also peaks around special points on the zone 
boundary, proportional to the structure factor of a local operator. In other 
words, as a side effect we have directly measured (the Fourier transform of) 
the correlation function of that local operator; thus the singular powers 
2 - r  ~ and 2-r/~2~ found around the zone boundary peaks are the best 
estimates of the exponents that could be obtained by the standard 
approach. But in fact those peaks were not strong enough to extract 
meaningful values of the exponents; a larger system size would be 
necessary. Since the standard analysis using the operator correlation func- 
tions uses the s a m e  data that enter the "height-fluctuation" analysis, this 
gives a fair measure of the superiority of the latter approach. 

It is interesting to compare our methods to another older literature, 
that of SOS model simulations. These simulations 12~ frequently determined 
K by fitting the system size dependence of the net height variance W 2 to 
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Eq. (4.5). Such a method throws away much of the information in the 
smallest p wavevectors by integrating over them. In other cases I-'~J authors 
evaluated the correlation function C(x) fitting to Eq. (2.5). This correlation 
function, in principle, has the same information as ([~(p)12), but it does 
not exclude the large-p modes (with their systematic errors) quite as 
cleanly. In either of the two older methods, K would be extracted from a 
linear fit to the logarithmic dependence. Either of those methods would 
work poorly for our data, due to the limited range of In r offered with 
system size L -- 32. With the Fourier method we can already get the correct 
stiffness to ~10  -3 (in the simple dimer case, which seems especially 
favorable). 

The dimer-loop model is a good candidate for a Bethe-ansatz exact 
solution, since it maps to the square-lattice fully packed loop (FPL) model 
with fugacity n = 2, while the honeycomb FPL  model is soluble, n2~ 

It is also interesting to note that the dimer-loop model is a limiting 
case of the family of "loop-gas" models, which also arise from the super- 
position of two dimer coverings. Namely, this loop gas has a fugacity for 
ordinary loops o f y  = 2, and a fugacity for loops of length 2 (corresponding 
to superposed black and white dimers) is x = 0. Iz3~ (The original case of the 
loop gas had y = 4 and x = 2, and described the correlation functions of the 
nearest neighbor resonating-valence bond variational wavefunction for 
the spin-l/2 antiferromagnet on the square lattice.) 

Another promising direction would be to study the "ghost" versions of 
the two-color dimer models by a Kosterlitz-Thouless type of renormaliza- 
tion group, e.g. to determine how the coupling between colors tt renor- 
malizes when it is small. 
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